
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

WEB DATABASE DEVELOPMENT

by

Nikolaos A. Tsardas

September 2001

 Thesis Advisor: Thomas Wu
 Second Reader: Chris Eagle

Approved for public release; distribution is unlimited

Report Documentation Page

Report Date
30 Sep 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Web Database Development

Contract Number

Grant Number

Program Element Number

Author(s)
Nikolaos Tsardas

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research Office Naval Postgraduate School Monterey
Ca. 93943-5138

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
91

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Web Database Development

6. AUTHOR(S) : Nikolaos Tsardas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)
This thesis explores the concept of Web Database Development us ing Act ive Server

Pages (ASP) and Java Server Pages (JSP). These are among the leading technologies in the

web database development . The focus of th is thesis was to analyze and compare the ASP

and JSP technologies , exposing their capabil i t ies , l imitat ions, and differences between

them. Specif ical ly , issues related to back-end connect iv i ty using Open Database

Connect iv i ty (ODBC) and Java Database Connect iv i ty (JDBC), appl icat ion archi tecture ,

performance, and web secur i ty were examined.

For demonstrat ion purposes, two appl icat ions were developed, one with ASP and

another with JSP. The user interface and the funct ional i ty of these two appl ications were

ident ical , while the archi tecture , performance, and back-end connect iv i ty was to ta l ly

d ifferent .

15. NUMBER OF
PAGES 98

13. SUBJECT TERMS
Web Database Development, Active Server Pages, Java Server Pages, ODBC, JDBC, Web Servers,
Servlets, JavaBeans, Multi-Tier Architecture, IIS, Tomcat, Java, VBScript 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis explores the concept of Web Database Development using

Active Server Pages (ASP) and Java Server Pages (JSP). These are among

the leading technologies in the web database development. The focus of

this thesis was to analyze and compare the ASP and JSP technologies,

exposing their capabilities, l imitations, and differences between them.

Specifically, issues related to back-end connectivity using Open Database

Connectivity (ODBC) and Java Database Connectivity (JDBC),

application architecture, performance, and web security were examined.

For demonstration purposes, two applications were developed, one

with ASP and another with JSP. The user interface and the functionality

of these two applications were identical, while the architecture,

performance, and back-end connectivity was totally different.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION...1

II. ODBC – JDBC ANALYSIS AND COMPARISON...5
A. ODBC..5
B. JDBC ...8
C. ODBC – JDBC COMPARISON...12

1. Simplicity ..12
2. Functionality...12
3. Performance ...14

III. ASP-JSP OBJECTS ANALYSIS...17
A. ASP BUILT-IN OBJECTS ...18

1. Request Object ...19
2. Response Object ...20
3. Server Object..21
4. Application Object ...22
5. Session Object...22
6. ObjectContext Object..23
7. ASPError Object ...24

B. JSP IMPLICIT OBJECTS..24
1. Servlet-related Objects ..26

a. Page Object..26
b. Config Object...26

2. Input-Output Objects ..27
a. Request Object...27
b. Response Object ..28
c. Out Object..29

3. Contextual Objects...30
a. Session Object ...30
b. Application Object...31
c. PageContext Object...31

4. Error Handling Objects ..32
Exception Object ...32

C. COMPARISON BETWEEN THE ASP AND JSP OBJECTS..................33
1. Request Object API ...33
2. Response Object API ...34
3. Session Object API...35
4. Application Object API ...36
5. Error Object API ...37

IV. ASP-JSP APPLICATION ARCHITECTURE ...39
A. ANALYSIS ...39

 vii
1. Presentation Layer...40

2. Application Layer ..40
3. Control Layer ...40
4. Page-centric Approach ..41

a. Maintainability ..41
b. Flow Control ...42

5. MVC Approach..42
B. COMPARISON..43

1. ASP Architecture ...43
2. JSP Architecture ..44
3. Conclusions...46

V. ASP - JSP PERFORMANCE ..49
A. ANALYSIS ...49
B. COMPARISON AND CONCLUSIONS..53

VI. ASP - JSP WEB SECURITY...57
A. ANALYSIS ...57

1. JSP...57
a. Basic Authentication...59
b. Digest Authentication ...59
c. Form-Based Authentication ...60
d. X.509 Client Certificate Authentication.................................61
e. Authorization...62
z. Custom Authentication and Authorization63

2. ASP..64
a. Anonymous Access..65
b. Integrated Windows ..65
c. X.509 Client Certificate...65
d. Authorization...66
e. Custom Authentication and Authorization66

B. CONCLUSIONS ..67

VII. CONCLUSIONS ..69

APPENDIX A...71
A. APPLICATION DESCRIPTION...71
B. DATABASE CONNECTIVITY ISSUES ..73

LIST OF REFERENCES..75

INITIAL DISTRIBUTION LIST ...77

 viii

LIST OF FIGURES

Figure 1. ODBC Model. ..5
Figure 2. ASP Built-In Objects. ..18
Figure 3. JSP Conversion to Servlet..25
Figure 4. Architecture Layers..39
Figure 5. Page-centric Approach..41
Figure 6. MVC Approach..42
Figure 7. MVC Approach with JSP..45
Figure 8. Login Configuration Tags..58
Figure 9. Form-Based Authentication Tags. ...60
Figure 10. Client Certificate Authentication Tags. ...61
Figure 11. A Sample Tomcat-users.xml File...63
Figure 12. Authentication Methods in IIS 5.0...64
Figure 13. Identical ASP and JSP Pages for Database Information Retrieval.71

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. ODBC Model. ..6
Table 2. JDBC Classes...11
Table 3. ODBC-JDBC Comparison...14
Table 4. Request Object API..20
Table 5. Response Object API ...21
Table 6. Server Object API. ...21
Table 7. Application Object API..22
Table 8. Session Object API. ...23
Table 9. ObjectContext Object API. ..23
Table 10. ASPError Object API...24
Table 11. JSP Common Methods for Attribute Management..26
Table 12. Config Object API. ..27
Table 13. Request Object API..28
Table 14. Response Object API. ..29
Table 15. Out Object API. ...30
Table 16. Session Object API. ...30
Table 17. Application Object API..31
Table 18. PageContext Object API. ...32
Table 19. Exception Object API. ...33
Table 20. Request API Comparison...34
Table 21. Response API Comparison. ...34
Table 22. Session API Comparison. ..35
Table 23. Application API Comparison...36
Table 24. Error API Comparison. ..37
Table 25. ASP-JSP Performance Factors...53
Table 26. Database Access Results..54

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Prof. Thomas Wu and Prof. Chris Eagle

for their support and guidance they gave me during this thesis.

Also I would like to thank my wife for her endless encouragement and patience.

 xiii

I. INTRODUCTION

With the rapid development of web technology the traditional client-server model

in database applications tends to lose its previous usefulness and popularity. A new

model, based on web technology, introduces the multi-tier architecture in all applications

that are used in Internet and Intranet networks. The new model of client is “thin”, using

mainly a “browser” to connect to the desired server. However, now between the client

and the server is introduced a number of middle tiers who is role is to accept, filter,

direct, and serve the data from the back-end database server to the client.

This thesis will explore this relatively new web technology and will evaluate its

different implementations. This new technology will be used to replace existing database

applications in the Hellenic army that use the traditional two-tier client-server

architecture.

Presently, those existing database applications are not very flexible. They involve

a central database system and a number of “thick” clients. These clients are specific

programs (usually from the same vendor of the database system) that are able to connect

and retrieve or update information from the database server. A portion of the “application

logic” is on the client side. This is a main reason that makes the management of these

applications difficult. Whenever some changes need to be made to the logic, all clients

are involved.

Performance is another issue. Usually these types of “thick” clients establish from

the beginning a session with the server and keep that session open continuously, no

matter if they actually use that session or not. When many clients are connected to the

server the overall performance is reduced dramatically. On the other hand in a multi-tier

application the web server is responsible for establishing each session when needed or

terminating it when it is idle.

With the new model, all the logic is implemented either in the middle tiers

(usually a web server) or in the database server. This makes administration much easier.

Scalability is another issue, because web-technology permits users to increase to several

thousands, or more, without any special administrative effort. Also the new technology

1

permits any number of intermediate tiers that can implement specific tasks like security,

indexing, and transaction control. Last, but not least this new architecture permits the

connection of these database applications to the Internet with a minimum of effort

(although security issues introduce some limitations).

Two of the leading technologies in web database development will be examined:

• Active Server Pages(ASP) from Microsoft

• Java Server Pages(JSP) from Java Platform

The objective of this thesis is to provide a comprehensive evaluation of these two

different approaches in web database development. The conclusions will contribute to the

actual transition from older models (client-server applications) to the most suitable and

promising implementation of web technology (multi-tier applications). This transition

will require a lot of resources and manpower, but in the long run it will be more flexible

and more secure, it will save administrative resources and will exploit the Internet

technology. The outline of my thesis is as follows:

In Chapter II, I present the back-end connectivity issues. ASP uses Open Database

Connectivity (ODBC) while JSP uses Java Database Connectivity (JDBC). These two

different connectivity techniques are presented and compared, because they are an

important factor in the overall application’s performance and functionality.

In Chapter III, I analyze and compare the built-in objects of these two

technologies. These objects provide information related to the HTTP protocol, the client

and the web server, facilitating the development effort. Every web application makes

extensive use of these built-in objects.

In Chapter IV, I present the architecture issues. There is more than one available

architectural model for each technology. These models are implemented differently by

each technology. Architecture greatly affects maintenance efforts and overall application

lifecycle.

In Chapter V, I analyze performance issues. I present specific factors that increase

application performance for each technology. Performance results, from testing

implementations, are presented and commented.

2

In Chapter VI, I present how each technology implements web security.

Capabilities and limitations are described for each case. Web server issues are, also

introduced.

Finally, in Chapter VII, I present the overall conclusions from the analysis and

comparison of the ASP and JSP technologies.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. ODBC – JDBC Analysis and Comparison

In order to proceed with a detailed and thorough comparison between the ASP

and JSP technologies we have to examine the underlying level that consists of the ODBC,

JDBC or both.

A. ODBC

ODBC allows a single application to access different database management

systems (DBMSs) using the same Application Programming Interface (API). It stands

between the application and the Database Management System (DBMS). As you can see

in Figure 1, the application’s requests are passed to the ODBC driver manager. Then, the

driver manager searches for the specific database driver. If that specific database driver

isn’t found then the process ends. If it is found, then the request is passed to that database

driver in order to communicate with the database and the requesting process. The results

(if any) are routed back from the database to the application through the specific database

driver and the ODBC driver manager.

 ODBC

Oracle
Database
Driver

SQL Server
Database
Driver

Sybase
Database
Driver

Oracle

Sybase

SQL
Server

Application

ODBC
driver
Manager

ODBC
driver
Manager

ODBC
driver
Manager

ODBC
driver
Manager

Figure 1. ODBC Model.

ODBC is not an easy to use programming interface. In order to simplify the

process of using ODBC API Microsoft established the ActiveX Data Objects (ADO).

5

ADO is an API that includes all the functionality of the ODBC model, being both flexible

and easy to program. ADO objects provide all the necessary interface to the programmer

in order to access almost any data source (DBMS) for 1 – to n-tier client/server and web-

based data-driven development.

ADO objects -in version 2.6- are relatively few in number as we can see in the

following table [Ref. 1]:

Object Description

Connection The highest-level ADO object. Provides a pathway that other
objects can use to access a database provider. It needs a data
source name (DSN) or a connection string

Recordset Provides access to the result set of a query or other database
operation. It has numerous methods for the result set
manipulation.

Field Provides access to individual fields in the current record of a
Recordset. ADO automatically creates Field objects when it
creates Recordsets.

Property Provides access to any characteristic of an ADO object. ADO
automatically creates Property objects when it creates any type of
object.

Command Holds a command-and optionally command parameters-that
will execute through a database connection. Mainly supports
functions that the Record object doesn’t: parameter queries and
commands that don’t produce a recordset.

Parameter Holds a named value that the database provider will merge into
a predefined query or stored procedure.

Error Contains information about errors reported by a database
provider.

Record Represent one row of a recordset, or a directory or file in a file
system.

Stream Represents a binary stream of data.

Table 1. ODBC Model.

Although all the ADO objects are needed in a web database application, the most

frequently used object is Recordset. This object is used for operations such as opening

tables or queries, finding records, and displaying or updating field values. It has many

6

methods and properties, but most web database work involves only a fraction of the

Recordset object’s many capabilities. The most common method operations are:

• Opening and closing a recordset

• Moving the cursor forward or backward

• Finding a record that satisfies a specified condition

• Adding, deleting or updating a record

• Canceling any updates made to the current record or to a new record

• Making or canceling batch updates to a group of records

• Saving the recordset in a file or a Stream object

• Returns the recordset as a string

• Obtains database schema information from the provider

Also using the ADO’s Recordset and Field properties we can retrieve useful

information -metadata- about the result set such as:

• The name and the value of each field in a record

• The type and the size of each field

• The maximum length of each field in bytes

Finally, depending on the supplied parameters in the Recordset’s Open method

the result set can be opened in a number of ways:

• Statically: the recordset doesn’t reflects updates made from other users

• Dynamically: the recordset reflects updates made from other users

• Forward-Only: similar to static except that it can only scroll forward.

Improves performance.

• Read-Only

• Locking records either from the time that the record is being edited or by

the time that the update method is being called

• Allowing or not batch updates - transaction support

7

B. JDBC

JDBC is a collection of Java classes that provides the connectivity between the

Java programs and the JDBC-enabled data sources. JDBC was derived from ODBC. The

most common data source is a relational DBMS (RDBMS). Like ODBC, JDBC uses

method or function calls to access its features, so it is also a call-level interface. With

JDBC the programmer can have a standard interface to all DBMSs. Switching from one

DBMS to another requires little or no changes in the application. Usually only the data

type names and support for certain operation types are needed some changes. In that case,

metadata can be used to solve that problem. The basic JDBC operations are:

• Load the JDBC specific driver for the DBMS (provided by the vendor)

• Open a connection using the DriverManager class. This step involves the

previous loaded driver and the data source to be used

• Issue SQL statements to the DBMS through the connection

• Process result sets returned by the SQL statements

The JDBC API is contained in the java.sql and javax.sql packages. It consists

mainly of interfaces rather than concrete classes because each vendor’s implementation is

specific to their particular DBMS protocol. Every vendor supplies a driver Java class that

implements the java.sql.Driver interface. All these specific drivers along with the

DriverManager class compose the middle layer of the JDBC, which primary function is

to connect to a database and return a java.sql.Connection object. There are four types of

JDBC drivers[Ref. 6]:

• Type 1 – JDBC-ODBC bridge. Drivers of this type connect to databases

through an intermediate ODBC driver. Several drawbacks are involved

with this approach, so Sun describes it as being experimental and

appropriate for use only where no other driver is available. Both Microsoft

and Sun provide that type of driver.

• Type 2 – Native API, partly Java. Similar to JDBC-ODBC bridge, type 2

drivers use native methods to call vendor specific API functions. These

drivers are also subject to the same limitations as the JDBC-ODBC

8

bridge, in that they require native library files to be installed to client

systems, which must be configured to use them.

• Type 3 – Pure Java to database middleware. Type 3 drivers communicate

using a network protocol to a middleware server, which, in turn,

communicates to one or more DBMSs.

• Type 4 – Pure Java direct to database. Drivers of this type call directly into

the native protocol used by the DBMS.

Each of the four driver types has its own performance characteristics, but the API

is exactly the same in all four cases.

The JDBC-ODBC bridge driver is limited to the capabilities of the underlying

ODBC driver, which is single threaded and may perform poorly under a heavy load. Also

it requires native code library JdbcOdbc.dll to be installed on the client system. Finally

the JDBC-ODBC bridge driver requires an ODBC data source to be configured. Sun

recommends the bridge should only be used for experimental purposes when no other

JDBC driver is available.

On the other hand, the JDBC-ODBC bridge offers several significant advantages.

ODBC is widely supported, so using the bridge makes possible accessing a wide variety

of existing systems for which data sources are already configured. So, ODBC-enabled

database products, such as Microsoft Access or FoxPro, are widely available. These

features make the JDBC-ODBC bridge a good choice for low-volume web applications

and a useful tool for learning JDBC. To use the JDBC-ODBC bridge in a Java

application, a suitable ODBC data source must be configured. On Windows systems, this

is done through the control panel ODBC Data Sources application. The data source

should be configured as System DSN, because the JSP engine is typically running under

a system user profile.

Type 2 driver consists of an interface, written partly in Java, between Java

programs and the vendor specific database access middleware (for instance, Oracle

SQL*Net). A type 2 JDBC driver is typically a direct bridge to the proprietary call-level

API of the database product (Oracle OCI, for example). It doesn’t require the presence of

ODBC in the client. It does, however, require that administrators install and configure the

9

database vendor’s proprietary database access middleware. Consequently, type 2 drivers

cannot be used for the Internet.

Type 3 driver is a pure Java driver that, at the client, translates JDBC calls into a

database-independent network protocol. At the server, a separate driver component

translates the database –independent JDBC requests into database-specific, native calls.

As a result, type 3 drivers are able to connect Java-based clients to whatever types of

databases a separate server-side driver has been developed for. Type 3 drivers require

basic network connectivity at the client(a TCP/IP protocol stack), but they do not rely on

the presence of vendor-specific middleware or ODBC. However, type 3 drivers need to

be sophisticated enough to handle a variety of networking situations, including firewalls.

Also a Java program using a type 3 driver can claim to be highly generic because it will

run on any Java-enabled platform with a TCP/IP connection to a database server. This

type of driver is well-suited for use over the Internet. Typically, it provides support for

features such as caching (connections, query results, etc), load balancing and advanced

system administration such as logging and auditing. However, traversing the recordset

may take longer, since the data comes through the back-end server.

The all-Java driver type 4 converts JDBC calls into the vendor specific DBMS

protocol so that client applications can communicate directly with the database server.

These types of drivers are completely implemented in Java to achieve platform

independence and eliminate deployment administration issues. Since type 4 drivers don’t

have to translate database requests to ODBC or a native connectivity interface or to pass

the request on to another server, performance is typically quite good. Moreover, it boasts

better performance than types 1 and 2. Also, there is no need to install special software on

the client or server. Further, these drivers can be downloaded dynamically. However,

using that type of driver, the user needs a different driver for each database.

The java.sql API contains 16 interfaces, 8 classes and 4 exception types. The

javax.sql API adds another 12 interfaces and 2 classes. Many of these classes are of

interest primarily to JDBC driver developers. The most commonly used classes are:

10

Class Package Description

Connection java.sql An active link to a database through which a
Java program can read and write data, as well as
explore the database structure and capabilities.

Statement java.sql An interface that allows SQL statements to be
sent through a connection and retrieves the result
sets. Used to execute static SQL statements

PreparedStatement java.sql An extension of Statement that uses
precompiled SQL, possibly with dynamically set
input parameters.

CallableStatements java.sql An extension of PreparedStatement that can
invoke a stored procedure, if the DBMS support it.

ResultSet java.sql An ordered set of table rows produced by an
SQL query or a call to certain metadata functions

DatabaseMetadata java.sql An interface containing numerous methods that
provide information about the structure and
capabilities of a database

ResultSetMetadata java.sql An interface that describes the columns of a
ResultSet. It contains methods that describe the
number of columns, each column’s name, display
size, data type, and class name.

DriverManager java.sql An interface that registers JDBC drivers and
supplies connections that can handle specific
JDBC URLs

SQLException java.sql The base exception class used by the JDBC API

Table 2. JDBC Classes.

JDBC version 2.0 introduced some new and important features, which include:

• DataSource. JDBC driver names and URLs can be stored in a name

service and retrieved using Java Naming and Directory Interface (JNDI)

• Connection Pooling. A data source provider can offer connection

pooling, allowing connections to be activated and recycled, usually with a

significant performance improvement. This capability is configured

entirely in the naming service and requires no changes to applications.

• Scrollable result sets. New methods are provided for forward and

backward navigation, as well as relative and absolute cursor positioning

11

• RowSets. This new interface extends and generalizes java.sql.ResultSet so

it can be detached from its database connection. This interface can be

useful in JavaBeans model, with XML documents and for Personal Digital

Assistant(PDA) applications.

• BatchUpdates. Transactions can be grouped and sent to the database as a

unit, using the Connection’s commit and rollback methods along with the

Statement’s addBatch and executeBatch methods.

Also, the first public draft of JDBC 3.0 was released for public review recently.

Its new features include:

• Enhanced control of commit /rollback transaction boundaries.

• Configurability for connection pools

• Better interface to parameters in prepared and callable statements.

C. ODBC – JDBC COMPARISON

1. Simplicity

One of the stated goals for both ADO (using ODBC) and JDBC API was that they

should be simple and easy to master. I think that both technologies achieved that goal. As

we can see in the above tables, both of them use mainly nine objects. These objects have

similar functionality. A programmer has to learn only these objects and three or four of

their main methods in order to use them effectively.

2. Functionality

Initially, JDBC 1.0 was limited in its functionality. It had no support for either

scrollable result sets or batch updates. JDBC 2.0 however, introduced a number of useful

new features as shown above. Now JDBC and ADO have similar functionality as shown

below:

Action ADO (using ODBC) JDBC REMARKS

Connect to a
database

Connection object
using as parameters a
data source name or
connection string

Connection object
using:

-DriverManager class,
with the database URL
as a parameter or

Similar
functionality for
both.

12

Action ADO (using ODBC) JDBC REMARKS

 -A DataSource class
from JNDI

Get result
sets from the
database

Recordset object
using as parameters a
SQL string, an active
connection object, a
cursor type and a lock
type

ResultSet object
using the Statement
object and an SQL
string. The Statement
object defines the
active connection and
the cursor type and a
lock type

Similar
functionality for
both.

Result set’s
movement type
between
records

Allows any type of
movement using
Recordset’s movement
methods

Allows any type of
movement using
ResultSet’s movement
methods

Similar
functionality for
both.

Result set’s
updates
without using
SQL
commands

Recordset’s methods
AddNew, Update,
CancelUpdate, Delete

ResultSet’s methods
insertRow, updateRow,
cancelRowUpdates,
deleteRow

Similar
functionality for
both.

Result set’s
cursor types

Static, Dynamic,
Forward-only and
Keyset

Insensitive, Sensitive
and Forward only

They both can
open a recordset
allowing all types
of cursor
movements or
forward-only,
reflecting updates
or not. However
ADO has richer
variety.

Result set’s
lock type

Read-only,
Pessimistic, Optimistic,
BatchOptimistic

Read-only,

Updatable

Both can open a
record set either as
read-only or
allowing updates.
However with
ADO you can
define also how an
edited record can be
locked during
updates (from the
beginning or when
the update
command is

13

Action ADO (using ODBC) JDBC REMARKS

invoked)

Transactions Using
BatchOptimistic lock
type permits the
UpdateBatch and
CancelBatch methods
to be used for batch
updates

Using Statement
object methods
addBatch,
executeBatch and
clearBatch

Similar
functionality for
both

Stored
procedures or
parameter
queries

Command object
with the appropriate
parameters

CallableStatement
and PreparedStatement
object are used for
stored procedures and
parameter queries
respectively

Similar
functionality for
both

Metadata Recordset Properties
and Field Properties
provide adequate
information about the
database

The
DatabaseMetaData and
ResultSetMetaData
objects have 170
methods that describe
almost anything about
the database

Similar
functionality for
both

Streams Stream object
provides streams of
binary or text data

All Java’s I/O classes
are available. Also the
Serializable interface
allows the user to
define streams with
objects

JDBC has richer
options using
streams because it
allows object
serialization

Connection
pooling

ODBC allows the
connection’s time out
to be configured via the
control panel of the
Windows

JNDI allows full
configuration of the
connection pooling
(pre-allocation of
connections), based on
the data source
provider capabilities

JDBC uses
connection pooling
more effective-
through Java
objects- than
ODBC does.

Table 3. ODBC-JDBC Comparison.

3. Performance

For JDBC drivers written in Java, performance can be an issue. In Type 1 the

performance is degraded since the JDBC call goes through the bridge to the ODBC driver

14

and then to the native database connectivity interface. The result comes back through the

reversed process. In Type 2 drivers, ODBC is not used, so it performs better than Type 1

drivers. Types 3 and 4 are pure Java drivers and perform better than the other two driver

types.

Concluding, ODBC (via ADO) and JDBC have generally similar features.

Although there are pros and cons between them (multithreading, serialization, etc), the

main functionality remains the same. An important factor in choosing one of the two

technologies would be the platform on which they would be used. If we want to work in a

cross-platform environment then JDBC is our only choice.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

III. ASP-JSP Objects Analysis

Server side programming like ASP or JSP needs a set of tools in order to receive

and process information sent by the client or to send processed information back to the

client. This set of tools is provided by built-in objects that are available in both

technologies. ASP provides a set of objects named built-in objects, while JSP provides an

equivalent set named implicit objects. Specifically, each of these sets of objects can be

used to collect information about the user and his request, manage the transmission and

presentation of that information, store the information for later use, respond to the user,

and keep track of session-wide, application-wide, and web server-wide information. In

fact, these objects are provided by the web server, the IIS web server in the ASP case,

and the JSP container in the JSP case.

Each ASP or JSP developer has to use, more or less, that set of objects.

Fortunately, we don’t need to know much about what goes on inside of these objects. We

can treat them as black boxes, using programming languages (VBScript or JavaScript for

ASP and Java for JSP) to get information into them and out of them. We manipulate

these objects using each object’s API.

ASP built-in object API provides methods, properties, collections, and events:

• Methods are used to pass information to an object, have it perform some

action, or return some value.

• Properties are the object’s attributes (class or instance variables in the

programming parlance), which describe that object and can be read or

written, depending on the type of the property.

• Collections are groups of similar object properties, like the

ServerVariables collection of the Request object that includes all the

properties that describe the web server. Collections were created to

facilitate development tasks (providing features like enumeration, and the

Count property, among others).

• Events provide a way to define an action when an object’s particular event

occurs (like the start or termination of the application object).

17

JSP implicit object API provides methods and variables:

• Methods are used to pass information to an object, have it perform some

action, or return some value.

• Variables are regular Java class or instance variables.

Knowing the capabilities and limitations of these objects is crucial for the web

developer. We will evaluate these objects, by examining their functionality through their

methods, properties, collections, events, and variables.

A. ASP BUILT-IN OBJECTS

The ASP engine, the asp.dll file, includes a foundation set of seven objects,

providing access to information sent over HTTP, and can be extended through the

addition of other objects. The core set of objects is often enough to build simple

applications. Figure 2, shows graphically the relationship among the ASP built-in objects.

ActiveX Data
Objects (ADO)

ActiveX Data
Objects (ADO)

Database
Server

ActiveX Data
Objects (ADO)

Request

Response Page3

Session 2

Request

Response

Request

Response

Page2

Page1

Session 1

Application
Server

Figure 2. ASP Built-In Objects.

18

Microsoft has built a large number of components beyond the core ASP objects.

Some like the ActiveX Data Objects are included with ASP, though they need separate

initialization. A few, like the File Access components are installed as part of the scripting

environment that comes with ASP, though they aren’t ASP-specific, while others require

a separate download and installation process.

A detailed analysis of the built-in ASP objects follows:

1. Request Object

The Request object contains information about the client’s request that triggered

the ASP page. This object supplies most of its information through collections, which

represent the contents of HTTP headers, information from HTML forms, cookies, and

other material. We can easily use collections with VBScript in the following way:

 variable = object.collection(property_name)

 e.g. cookieID = Request.Cookies(“id”)

The following collections, properties and methods are provided:

Category Name Description

Collections Client

Certificate

If the browser submits a digital certificate along with the
normal HTTP request, then the collection will contain an
entry for each field in the certificate (issuer, user, serial
number, validity period, etc).

Collections Forms Contains any values the browser transmitted from an
HTML form using the POST method. Most HTML forms
contain one or more Submit buttons plus a number of text
boxes, selection lists, etc. Each of these form elements has a
name and a value. When the client clicks the Submit button,
the browser sends all the form element names and values to a
URL specified in the form’s action attribute. If that action
attribute specifies an ASP page using the POST method then
all the form’s element values appear in the Request.Form
collection.

Collections Cookies Contain one entry for each cookie value the Web server
sent to the client’s browser as part of an earlier response. This
is one solution to the problem of Web transactions being
stateless.

19

Category Name Description

Collections QueryString It is used when the client submits an HTML form with the
GET method or a URL containing at the end a query string.
However, it increases the length of the URL. If the URL
exceeds the capacity of either the browser or the Web server,
this can lead to loss of data with unpredictable results.

Collections Server-
Variables

Contain information about the visitor, the browser, the Web
server and other details depending on the circumstances. One
useful value is the “HTTP_USER_AGENT” string, which
identifies the client’s browser, operating system and other
facts. Microsoft provides a specific object that analyzes these
strings.

Property TotalBytes Provides the total number of bytes the client sent in the
body of the request.

Method BinaryRead Provides the exact data the client sent to the server as part
of a POST request.

Table 4. Request Object API.

2. Response Object

This is the most complex built-in ASP object. It transmits an ASP page’s output

to the Web client who submitted the request. Specifically, this object is used to add and

alter HTTP headers, build page bodies dynamically, and redirect clients to alternative

pages automatically. It has many features but not all of them are frequently used. I will

present the most important:

Category Name Description

Collections Cookies Contains any cookie values received from the client, or that
you want to sent to the client.

Collections Buffer Indicates whether to buffer page output. Although buffering
requires extra resources from the Web server, experience has
shown that buffering outgoing ASP pages actually consumes
fewer resources than not buffering them. Buffering is the
default in Windows 2000.

Collections ContentType Specifies the outgoing HTTP content type. Changing this
property tells the browser you are sending something other
than HTML (XML, plain text, etc).

Collections Expires The number of minutes a browser can cache this page.

20

Category Name Description

Collections Expires-
Absolute

The date and time the browser must discard any cached
copies of this page.

Collections Status The value of the HTTP status code returned by the Web
server.

Methods AddHeader Adds or overrides an outgoing HTML header.

Methods Flush Immediately sends any buffered output to the Web client.

Methods Redirect Sends a message to the browser that tells it to connect to a
different URL.

Methods Write Writes an expression to the current HTTP output as
character data.

Table 5. Response Object API

3. Server Object

This object contains basic properties and methods that are used in almost every

ASP page, like:

Category Name Description

Property ScriptTimeout The amount of time a script can run before timing out.

Methods CreateObject Creates an instance of any non-built-in server component
the ASP page requires.

Methods HTMLEncode Applies HTML encoding to a string.

Methods MapPath Maps a virtual path into a physical path. The virtual path
can be an absolute path on the current server or a path
relative to the current page.

Methods URLEncode Applies URL encoding rules, including escape
characters, to a string.

Methods Transfer Transfers page execution from one page to the next. This
method is more efficient than Response.Redirect method.

Methods GetLastError Returns a reference to an ASPError object.

Table 6. Server Object API.

21

4. Application Object

The Application object provides an area where all the pages of the application can

exchange data among themselves and a means by which a developer can schedule code to

run whenever the application starts or stops. It includes:

Category Name Description

Collections Contents Contains all items that script commands have added to
the Application object.

Collections StaticObjects Contains all objects that <object> tags have added to the
application.

Methods Lock Prevents other clients from modifying Application object
properties.

Methods UnLock Allow other clients to modify Application object
properties.

Methods Remove Deletes an item from the Contents collection.

Methods RemoveAll Clears the entire collection from memory.

Events Application_
OnStart

If a subroutine with this name exists in the global.asa
file, it will run whenever the application starts.

Events Application_
OnEnd

If a subroutine with this name exists in the global.asa
file, it will run whenever the application terminates.

Table 7. Application Object API.

5. Session Object

The first time a Web client enters an application (requests one of its ASP pages)

the Web server creates a Session object for that client. These objects are persistent,

meaning that they remain in existence until there is no activity from the Web client for a

specified interval (usually 20 minutes). As long as the object exists, it provides a storage

area for data passed from one page execution to the next, or from one page to another. It

includes:

Category Name Description

Collections Contents Contains all items that script commands have added to the
Session object.

Collections StaticObjects Contains all objects that <object> tag have added to the
session with session scope.

22

Category Name Description

Methods Abandon Destroys a Session object and releases its resources.

Methods Remove Deletes an item from the Contents collection.

Methods RemoveAll Clears the entire collection from memory.

Events Session_
OnStart

If a subroutine with this name exists in the global.asa file,
it will run whenever the session starts.

Events Session_
OnEnd

If a subroutine with this name exists in the global.asa file,
it will run whenever the session terminates.

Properties Codepage The code page (character set) used for symbol mapping.

Properties LCID The locale indentifier.

Properties SessionID The session identification for this user.

Properties Timeout The timeout period for the sessions within the current
application, stated in minutes.

Table 8. Session Object API.

6. ObjectContext Object

This object either commits or aborts transactions managed by Microsoft

Transaction Server(MTS) initiated by an ASP script. When an ASP page contains the

@TRANSACTION directive, the page runs in a transaction and does not finish processing

until the transaction either succeeds completely or fails. It contains:

Category Name Description

Method SetComplete Declares that the script is not aware of a reason for the
transaction not to complete

Method SetAbort Aborts a transaction initiated by an ASP page

Event OnTransaction
Commit

Occurs after a transacted script’s transaction commits

Event OnTransaction
Abort

Occurs if the transaction is aborted

Table 9. ObjectContext Object API.

23

7. ASPError Object

This object increases the ASP error-handling capability letting the developer

trapping errors in a custom error message ASP file. The ASPError object is returned by

the Server.GetLastError method. It contains:

Category Name Description

Property ASPCode Returns an error code generated by IIS.

Property Number Returns the standard Microsoft’s Component Object
Model (COM) error code.

Property Source Returns the actual source code of the line that caused the
error.

Property FileName Indicates the name of the ASP file that was being
processed when the error occurred.

Property LineNumber Indicates the line within the ASP file that generated the
error.

Property Description Returns a short description of the error.

Property ASP
Description

Returns a more detailed description of the error if it is an
ASP-related error.

Table 10. ASPError Object API.

B. JSP IMPLICIT OBJECTS

The JSP container exposes nine internal objects to the JSP developer. They are

referred to as implicit objects, because they don’t have to be declared or created by the

developer in order to be used. These objects will be automatically assigned to specific

variable names in the page’s scripting language.

Besides the implicit objects, JSP pages, via scripting elements, have all the power

for creating, modifying, and interacting with Java objects in order to generate dynamic

content. Application-specific classes can be instantiated and values from method calls can

be inserted into JSP output. Network resources, such as databases, can be accessed to

store and retrieve data for use by JSP pages.

24

JSP pages are based on the Java servlets technology. Behind the scenes the JSP

container automatically creates, compiles, loads, and runs a special servlet to generate the

JSP’s output, as shown in Figure 3.

Client

Servlet

Java
Compiler

JSP file

WEB SERVER

Figure 3. JSP Conversion to Servlet

The JSP implicit objects fall into four major categories: objects related to a JSP

page’s servlet, objects concerned with page input and output, objects providing

information about the context within which a JSP page is being processed, and objects

resulting from errors [Ref. 9].

Beyond this functional categorization, four of the JSP implicit objects –request,

session, application, and pageContext– have something else in common: the ability to

store and retrieve arbitrary attribute values, using the four methods in the table below. By

setting and getting attribute values, these objects are able to transfer information between

and among JSP pages and servlets as a simple data sharing mechanism. The common

methods for attribute management of these four objects are:

25

26

Method Description

setAttribute(key, value) Associates an attribute value with a key.

getAttributeNames() Retrieves the names of all attributes associated with the
session.

getAttribute(key) Retrieves the attribute value associated with the key.

removeAttribute(key) Removes the attribute value associated with the key.

Table 11. JSP Common Methods for Attribute Management.

Lets see each JSP implicit object in detail:

1. Servlet-related Objects

a. Page Object

The page object represents the JSP page itself or more specifically, an

instance of the servlet class into which the page has been translated. As such, it may be

used to call any of the methods defined by that servlet class. Essentially, when the

scripting language is Java, the page object is an alias for the this variable. This object is

rarely used, because the JSP author has direct access to all methods of the JSP’s

generated servlet. The servlet class is required to implement the javax.servlet.jsp.JspPage

interface, and in the case of the HTTP protocol, the javax.servlet.jsp.HttpJspPage

interface.

b. Config Object

The config object stores servlet configuration data (in the form of

initialization parameters) for the servlet, into which a JSP page is compiled. The values

for initialization parameters are specified via the deployment descriptor file (web.xml) of

the web application. The initialization process can be done using the jspInit() method.

This object is an instance of the javax.servlet.ServletConfig interface and has the

following methods:

Method Description

getInitParameter(name) Returns the value of the specified servlet initialization
parameter, or null if the named parameter does not exist.

getInitParameterNames() Returns a list of the names of all initialization parameters
for this ser let

Method Description

for this servlet.

getServletContext() Returns a reference to the servlet context (same as the
application implicit variable).

getServletName() Returns the name of the generated servlet .

Table 12. Config Object API.

2. Input-Output Objects

a. Request Object

The request object represents the request that triggered the processing of

the current page. For HTTP requests, this object provides access to all of the information

associated with a request, including its source, the requested URL, and any headers,

cookies, or parameters associated with the request. The request object is required to

implement the javax.servlet.ServletRequest interface, and when the protocol is HTTP, it

must implement a subclass of this interface, javax.servlet.http.HttpServletRequest. This

object provides methods for retrieving request parameters, HTTP headers and

miscellaneous functionality such as access to the requested URL and the session. The key

methods are:

Method Description

getParameter(name) Returns the first value of a single request parameter.

getParameterNames() Returns the names of all request parameters.

getParameterValues(name) Retrieves all of the values for a single request parameter.

getHeaderNames() Retrieves the names of all of the headers associated with
the request.

getHeader(name) Returns the value of a single requested header, as a string.

getHeaders(name) Returns all of the values for a single requested header.

getIntHeader(name) Returns the value of a single requested header, as an
integer.

getDateHeader(name) Returns the value of a single requested header, as a date.

getCookies() Retrieves all of the cookies associated with the request.

getMethod() Returns the HTTP(GET, POST, etc) method for the
request.

27

Method Description

getRequestURI() Returns the requested URL, up to but not including any
query string.

getQueryString() Returns the query string that follows the URL, if any.

getSession(flag) Retrieves the session data for the request (the session
implicit object), optionally creating it if it doesn’t already
exist.

getRequestDispatcher(path) Creates a request dispatcher for the indicated local URL.

getRemoteHost() Returns the fully qualified name of the host that sent the
request.

GetRemoteAddr() Returns the network address of the host that sent the
request.

getRemoteHost() Returns the name of the user that sent the request, if
known.

Table 13. Request Object API.

b. Response Object

The response object represents the response that will be sent back to the

user as a result of processing the JSP page. This object implements the

javax.servlet.ServletResponse interface and in the case of the HTTP protocol the

javax.servlet.http.HttpServletResponse interface. This object provides methods for

specifying the content type and encoding of a response, for setting response headers and

codes and for URL rewriting. The key methods of this object are:

28

Method Description

setContentType() Set the MIME type and, optionally the character encoding of
the response’s contents.

getCharacterEncoding() Returns the character encoding style set for the responses
contents.

addCookie(cookie) Adds the specified cookie to the response.

containsHeader(name) Checks whether the response includes the named header.

setHeader(name, value) Assigns the specified string value to the named header.

SetIntHeader(name, value) Assigns the specified integer value to the named header.
setDateHeader(name, value) Assigns the specified date value to the named header.

addHeader(name, value) Assigns the specified string value as a value for the named
header

Method Description

header.
AddIntHeader(name, value) Assigns the specified integer value as a value to the named

header.
addDateHeader(name,

value)
Assigns the specified date value as a value for the named

header.

setStatus(code) Sets the status code for the response (for non-error
circumstances).

sendError(status, msg) Sets the status code and error message for the response.

SendRedirect(url) Sends a response to the browser indicating it should request
an alternate (absolute) URL.

encodeRedirectURL(url) Encodes a URL for use with the sendRediect() method to
include session information.

encodeURL(name) Encodes a URL used in a link to include session
information.

Table 14. Response Object API.

c. Out Object

The out object represents the output stream for the page, the contents of

which will be sent to the browser as the body of its response. It is an instance of the

javax.servlet.jsp.JspWriter class, which extends the standard java.io.Writer class. It

provides all the write(), print(), and println() methods for output generation. By taking

advantage of this implicit object, output can be generated from within the body of a

scriplet without having to temporarily close the scriplet to insert static page content or

JSP expressions. In addition the out object provides methods for controlling the output

buffer and managing its relationship with the output stream that ultimately sends content

back to the browser.

Method Description

isAutoFlush() Returns true, if the output buffer is automatically flushed when it
becomes full, false if an exception is thrown.

getBufferSize() Returns the size (in bytes) of the output buffer.

getRemaining() Returns the size (in bytes) of the unused portion of the output
buffer.

29

Method Description

clearBuffer() Clears the contents of the output buffer, discarding them.

clear() Clears the contents of the output buffer, signaling an error if the
buffer has previously been flushed.

newLine() Writes a (platform specific) line separator to the output buffer.

flush() Flushes the output buffer, then flushes the output stream.

close() Closes the output stream, flushing any contents.

Table 15. Out Object API.

3. Contextual Objects

a. Session Object

This JSP implicit object represents an individual user’s current session.

All of the requests made by a user that are part of a single series of interactions with the

web server are considered to be part of a session. If a certain length of time passes

(usually 30 minutes) without any new requests from the user, the session expires. The

session object provides methods for storing information about the session. Some useful

methods are:

Method Description

getId() Returns the session id.

getCreationTime() Returns the time at which the session was created.

getLastAccessedTime() Returns the last time a request associated with the session
was received.

getMaxInactiveInterval() Returns the maximum time (in seconds) between requests
for which the session will be maintained.

setMaxInactiveInterval() Sets the maximum time (in seconds) between requests for
which the session will be maintained.

isNew() Returns true if user’s browser has not yet confirmed the
session id.

invalidate() Discards the session, releasing any objects stored as
attributes.

Table 16. Session Object API.

30

b. Application Object

This implicit object represents the application to which the JSP page

belongs. It is an instance of the javax.servlet.ServletContext interface. The application

object provides methods for retrieving version information from the servlet container, for

accessing server-side resources represented as filenames and URLs, for logging, for

setting and getting attribute values, and for accessing initialization parameters associated

with the application as a whole. Some useful methods are:

Method Description

getServerInfo() Returns the name and version of the servlet container.

getMimeType(filename) Returns the MIME type for the indicated file.

getResource(path) Translates a string specifying a URL into an object that
accesses the URLs contents either locally or over the network.

getResourceAsStream(path) Translates a string specifying a URL into an input stream for
reading its contents.

getRealPath(path) Translates a local URL into a pathname in the local file
system.

getContext(path) Returns the application context for the specified local URL.
getRequestDispatcher(path) Creates a request dispatcher for the indicated local URL.

log(message) Writes the message to the log file.

log(message,exception) Writes the message to the log file, along with the stack trace
for the specified exception.

Table 17. Application Object API.

c. PageContext Object

This object provides access to all other implicit objects. In addition the

pageContext object implements methods for transferring control from the current page to

another page, either temporarily to generate output to be included in the output of the

current page, or permanently to transfer control altogether. This object is an instance of

the javax.servlet.jsp.Page-Context class. It provides methods for programmatically

accessing all of the other JSP implicit objects, for dispatching of request from one page to

another, and for managing its attributes.

31

Method Description

getPage() Returns the servlet instance for the current page (page
object).

getRequest() Returns the request that initiated the processing of the
page.

getResponse() Returns the response of the page.

getOut() Returns the current output stream of the page.

getSession() Returns the session associated with the current page
request.

getServletConfig() Returns the servlet configuration object.

getServletContext() Returns the context in which the page’s servlet runs.

GetException For error pages, returns the exception passed to the
page.

forward(path) Forwards processing to another URL.

include(path) Includes the output from processing another local
URL.

setAttribute(key,value,scope) Associates an attribute value with a key in a specific
scope.

getAttributeNamesInScope (scope) Retrieves the names of all attributes in a specific scope.

getAttribute(key,scope) Retrieves the attribute value associated with a key in a
specific scope.

removeAttribute(key,scope) Removes the attribute value associated with a key in a
specific scope.

FindAttribute(name) Searches all scopes for the named attribute.

getAttributesScope(name) Returns the scope in which the named attribute is
stored.

Table 18. PageContext Object API.

4. Error Handling Objects

Exception Object

This implicit object is not automatically available on every JSP page.

Instead, the exception object is only available on pages that have been designated as error

pages using the isErrorPage attribute of the page directive. On those JSP pages that are

32

error pages, the exception object will be an instance of the java.lang.Throwable class

corresponding to the uncaught error that caused control to be transferred to the error

page. Some useful methods are:

Method Description

getMessage() Returns the descriptive error message associated with the
exception.

printStackTrace(out) Prints the execution stack in effect when the exception was thrown
to the designated output stream.

toString() Returns a string combining the class name of the exception with its
error message (if any).

Table 19. Exception Object API.

C. COMPARISON BETWEEN THE ASP AND JSP OBJECTS

Now, we will attempt a direct comparison between the ASP and JSP objects and

their functionality.

1. Request Object API

Feature ASP Request
object

JSP Request object REMARKS

Retrieving
client certificate
in X.509
standard (when
it is requested
from the
server).

The
ClientCertificate
collection contains any
submitted client
certificate.
Additionally, the
ServerVariables
collection provides
extra details for that
certificate.

The client certificate can
be obtained via the request
attribute
javax.servlet.request.
X509Certificate, which
returns a java.security.
cert.X509Certificate
object.

Both technologies
handle certificates
efficiently, providing
easy access to every
field of the submitted
client certificate.

Retrieving
cookies.

The Cookies
collection provides -by
name- any submitted
cookies by the client.

Method getCookies()
returns an array of Cookie
objects submitted by the
client.

Similar functionality
for both.

Retrieving
form data
(parameters).

Form and
QueryString
collections are used
when the form’s
method is POST or
GET respectively. The
parameters are

Methods
getParameterNames(),
getParameter(name) and
getParameterValues(name)
are used no matter what
form method was used.

Generally, the
functionality is similar.
However the ASP
implementation is more
restrictive because you
have to use specific
collection based in the

33

Feature ASP Request
object

JSP Request object REMARKS

retrieved by name. form’s action method.
If no collection is
defined then the ASP
processor will search
all the collections of
the Request object,
resulting in more
overhead.

Retrieving
HTTP headers,
and details
about the client,
the client’s
browser and the
Web server.

ServerVariables
collection provides all
that information,
depending on the
supplied variable.
Also, Microsoft Web
servers include a
specific object for
retrieving client’s
browser information.

Methods
getHeaderNames() and
getHeader(name) provide
access to the HTTP
headers. Also, numerous
methods from the Request
implicit object provide all
the necessary information
(via the javax.servlet.http.
HttpServletRequest
interface)

Both approaches
provide a rich variety
of methods and
variables for retrieving
all that information.

Table 20. Request API Comparison.

2. Response Object API

Feature ASP Response object JSP Response object REMARKS

Setting
response
cookies.

The Cookies
collection sets any
response cookies.

Method
addCookie(cookie) adds
any new response cookies.

Similar functionality
for both.

Setting
response
headers.

Method AddHeader
and collections like
CacheControl,
ContentType along with
some others provide
response header
management.

Methods like
setHeader(name,value),
addHeader(name,value)
and containsHeader(name)
manage any response
headers.

Although the
functionality is similar
for both, JSP
implementation is
richer because it can
check if a given
header has already
been set.

Setting the
response status
codes.

The Status property
along with the Redirect
method are used for
setting status codes.

Methods setStatus(code),
sendError(status, msg), and
sendRedirect(url) provide
status code management.

Similar functionality
for both.

Table 21. Response API Comparison.

34

JSP Response implicit object provides two more methods (encodeURL(name)

and encodeRedirectURL(url)) that support URL rewriting, which is one of the

techniques supported by JSP for session management. There are no similar methods in

ASP implementation.

3. Session Object API

Feature ASP Session object JSP Session object REMARKS

Setting and
retrieving
items or
objects to the
Session object.

Collections Contents
and StaticObjects can be
used to set or retrieve
any items or objects
respectively, that are
included in the Session
object. Also, methods
like Remove and
RemoveAll remove
items from the Session
object.

Methods
setAttribute(key,value),
getAttribute(key),
getAttributeNames(), and
removeAttribute(key) are
used to set, get or remove
objects to the Session
implicit object.

Basically, the
functionality is similar
for both.

Managing
the Session
object.

There are properties
for setting the code
page, locale identifier
and Session timeout.
Events like
Session_OnStart and
Session_OnEnd used
when the Session object
is created or ended
respectively, while
method Abandon
destroys the current
Session object.

There are methods for
setting the timeout time,
for getting the last accessed
time or the creation time,
and for checking if the
Session object was
confirmed by the client’s
browser. Also method
invalidate() discards the
current Session.

Both
implementations cover
the Session
management
adequately. However,
ASP approach has the
Session_OnStart and
Session_OnEnd
events, which provide
additional flexibility in
initializing and
terminating
procedures.

Table 22. Session API Comparison.

35

An important aspect is that ASP maintains Session object using cookies. If the

Web client’s browser doesn’t support cookies or has disabled them, then the Session

object cannot be implemented. JSP solves that problem by using URL rewriting (via

built-in methods encodeURL(name) and encodeRedirectURL(url)), when cookies are

not available. This is a much more efficient approach.

4. Application Object API

Feature ASP Application
object

JSP Application object REMARKS

Setting and
retrieving
items or
objects to the
Application
object.

Collections Contents
and StaticObjects can be
used to set or retrieve
any items or objects
respectively, that
included in the
Application object. Also
methods like Remove
and RemoveAll remove
items from the
Application object.

Methods
setAttribute(key,value),
getAttribute(key),
getAttributeNames(), and
removeAttribute(key) are
used to set, get or remove
objects to the Application
implicit object.

Similar functionality
for both.

Synchronizat
ion issues
(Application is
a common
share object) .

Methods Lock and
Unlock are provided to
modify Application
object safely.

The keyword
synchronized may be used
to provide thread-safe
access to the Application
object.

Similar functionality
for both.

Application
object
management.

Events like
Application_OnStart
and Application_OnEnd
provide initialization
and termination
handling.

Methods
getInitParameter(name)
and
getInitParameterNames()
provide initialization
parameters to the
Application object.

While initialization
procedures work
similarly for both
implementations, ASP
has an additional
utility for termination
procedures.

Table 23. Application API Comparison.

Beyond the above comparison, JSP Application implicit object provides methods

for retrieving information about servlet container, for accessing server-side resources and

also support for logging. ASP provides similar functionality through other objects (e.g.

ServerVariables collection of Request object), while logging is completely configurable

through IIS Web server environment.

36

5. Error Object API

Feature ASP ASPError object JSP Exception object REMARKS

Information
returned by
the error
object.

It returns the IIS error
code, the COM error code,
the source of the error, the
file and the line that
generated the error, a
short description, and a
detailed description if the
error was an ASP-based
error.

It returns the
descriptive error
message, the exception
class name, and the
execution stack.

Basically, both
objects provide
similar
functionality,
returning
adequate
information about
the resulting
error.

Table 24. Error API Comparison.

The rest of the ASP and JSP objects cannot be directly compared.

The last of the ASP object is the Server object, which supports some useful

methods like HTMLEncode, MapPath, URLEncode, Transfer, GetLastError and the

ScriptTimeout property. JSP provides methods like getRealPath(path), the encode

method of the URLEncoder class, the sendRedirect(url), and the exception implicit object

which are the equivalent of MapPath, URLEncode, Transfer, and GetLastError methods

respectively. However, there is no JSP scriptTimeout property, or HTML encoding

method (although it can be programmed easily).

JSP implicit objects PageContext, Out, Config and Page support additional

functionality like access to every implicit object, output generation, initialization

procedures, and an alias to the current servlet instance, respectively. However, ASP

through the objects that we have already seen, provide similar functionality to those four

JSP objects.

Concluding, we can say that generally the built-in objects of both

implementations offer similar functionality with minor exceptions - richer HTTP

management from JSP, more flexibility with initialization and termination procedures in

Application and Session objects from ASP, etc. However, we have to mention the

inadequate session management of the ASP technology (relies only on cookies), while on

37

the other side JSP technology offers an efficient way of session management, supporting

URL rewriting beyond cookies.

38

IV. ASP-JSP Application Architecture

A. ANALYSIS

When designing web applications of any complexity using technologies like ASP

or JSP, it is very helpful to have the high-level application architecture separated in

discrete areas or layers (Figure 4) like:

• The presentation layer, which is the part of the application that the user can
sees or interacts directly

• The control layer, which controls the overall information flow between the
application and the user

• The application logic layer, which includes all the information processing,
and communication with back-end resources like databases

This architectural separation helps both developers and designers of the web

application. It helps to designate borders between each team’s responsibility area,

facilitates the abstraction of the application’s modules, future modifications and

maintenance are simplified, and the application’s lifecycle is usually longer. Each one of

the above three layers can be implemented in discrete components or they can be

combined all in one. The choice is up to a number of parameters like:

• The size and the complexity of the application

• The available time

• The number of the available designers and developers and their skill

 However, the less the discrete components will be implemented, the less

modularity and high-level abstraction will be achieved.

Database
Application
 Layer

Control
 Layer

Presentation
 Layer

Figure 4. Architecture Layers.

Lets see each layer in more detail:

39

1. Presentation Layer

This layer consists mainly of display elements like HTML or XML. It is the user

interface of the application receiving input from or displaying results to the user. This

layer doesn’t care how a user’s request was processed by the application. It just receives

the request and submits it in a background component or module. Additionally, it doesn’t

care from what component or module the application’s response was initiated. It just

receives it and presents it to the user, formatting it appropriately.

2. Application Layer

This layer is the core part of the application. It implements all the necessary

business logic executing queries to a database, making complex calculations and

manipulating data. Its overall operation is independent of any data presentation. It doesn’t

need to know anything about HTML and if designed properly it can be reused in other

web-based or non web-based applications.

3. Control Layer

This layer stands between the presentation and the application layers. It receives

requests from the presentation layer making decisions about where it will deliver them. If

for example, the request is about a database update, it delivers the request data only to the

component or module that does exactly that operation. Also the control layer decides if a

request is legitimate or not, taking an appropriate action. Finally it receives from the

application logic layer any completed request and delivers it to the user via the

presentation layer. Generally, this layer decides which application module will process a

request and when (the how portion of the process is left to the other two layers).

However, designing the application’s architecture in layers is not an easy task.

Mainly, there are two approaches to do that:

• The page-centric approach

• The Model-View-Control (MVC) approach

40

4. Page-centric Approach

In the page-centric approach, the application consists of interrelated server pages

that include all three layers (Figure 5). Every page must perform, to some extent, tasks

from each layer. For example every page receives directly or indirectly user input, makes

the necessary manipulation, presents some results to the user and finally awaits a user’s

response in order to forward control to the next page. Of course this doesn’t mean that the

three layers don’t exist. They certainly exist, but to be more precise, they co-exist in

every page, blurring the distinction between them.

Database

 page page page

Figure 5. Page-centric Approach.

Nevertheless, the page-centric approach is relatively simple from the architectural

perspective. It is appropriate for small applications, with little abstraction. It can be used

when we need immediate results, there is not enough time, by individuals or very small

developing teams, and for developing prototypes. However, there are some serious

problems with this approach such as:

a. Maintainability

Because every page includes presentation, logic, and control code, without

discrete borders between them, it usually requires a high degree of interaction between

the page designers and the developers whenever any modifications need to be done.

41

b. Flow Control

Because of the lack of central control, each page must maintain its own

protective code to prohibit out of order execution, invalid request parameters or any other

unexpected behavior. This is feasible for a few pages, but a real headache for bigger

applications.

5. MVC Approach

In this approach all the server pages are used mainly for presentation, leaving the

application flow control and the application logic to intermediate discrete component(s)

(Figure 6). All requests are routed from the front-end (server pages) to the controlling

component(s), which perform all the necessary checks before they are forwarded to

component(s) that incorporate the application’s logic and data structures. When all the

requests are processed they are returned back to the server pages again, for presentation.

More specifically the intermediate components can do:

• Application flow control between the presentation layer and the

application logic.

• Perform an action (database query, data manipulation, etc) based on the

submitted request from the server pages.

• Deliver requests back to the server pages for display.

Application
logic

component

Flow control
component Database

page

page

page

Figure 6. MVC Approach.

42

In this approach the server pages are relatively simple because their only task is

presentation, without any application logic. This makes maintenance easier, because only

the web-designers are needed in case of any modifications, not the developers. On the

other side, intermediate components include only application logic and flow of control,

having no presentation tasks. This also facilitates maintenance because only developers

are needed in order to perform any modifications in these components.

As a result of this approach, we have loosely coupled server pages, because they

don’t have to be directly aware of any other page inside the application. The abstraction

is also increased between the presentation and the application logic. Last but not least,

both the server pages and the intermediate components can be reused in other

applications, with little or no modifications, saving valuable time.

B. COMPARISON

ASP and JSP technologies were introduced in order to provide a simplified, fast

way to create web pages that display dynamically generated content. They both succeed

in that task. Also, they are both able to follow the above two architectural approaches, but

not in the same way and scale, which actually makes the difference between these two

technologies from the architectural point of view. But first lets examine each one

separately:

1. ASP Architecture

ASP is able to follow both the page-centric and the MVC approaches. However,

there are some serious limitations in the second approach.

In case of the page-centric approach, which is the most popular and common

implementation of the ASP technology, the application consists only of ASP pages, html

pages, and possibly a database. All application control and logic, along with the data

presentation, are included in the ASP pages. This is very convenient when the application

is not too large or the logic to be implemented not too complicated. If one (or both) of

these occurs then the ASP code can easily became very complex, introducing serious

maintenance problems. However, the page-centric approach with ASP can provide speed

43

during development phase and relatively quick results, because of Microsoft’s built-in

support of a number of useful and handy components, like ActiveX Data Objects (ADO).

In the case of the MVC approach, ASP provides to the developer the ability to use

the Component Object Model (COM). Which means that the developer can create, using

a compiled language like C++ or Visual Basic, COM objects encapsulating part of the

application logic. However, this is not an easy task. It involves a lot of complexity and

requires very skilled developers. That’s why that approach is not as common as the page-

centric approach in the ASP world. Last but not least, COM objects, although they can

incorporate application’s logic and control, cannot totally free-up ASP pages from

including application logic, allowing them to perform only presentation tasks.

2. JSP Architecture

Applications that are built in with JSP technology, can also adopt both

architectural approaches. They may consist of JSP and HTML pages like the ASP

approach or they can incorporate the MVC (servlet-centric) approach. In the first case we

have all the advantages and limitations already mentioned in the previous paragraphs. In

the second case things are different.

Beyond JSP pages, the Java platform provides a number of web components, like

servlets, javabeans, enterprise javabeans or even more, regular Java classes, which can be

incorporated in a JSP web-application. Specifically, each of the above Java objects can be

used in the following manner:

• The servlets as a flow control object or to include portion of the

application logic. However, including large portion of the application

logic in servlets is not recommended in large-scale applications.

• The javabeans, including part of the application logic and facilitating the

presentation tasks of the JSP pages.

• The enterprise javabeans (EJBs), in case of large, complex and

distributed applications, encapsulating business logic into reusable server-

side components.

• The regular Java classes as background objects that have specific tasks

like interaction with databases.

44

Figure 7 shows all the interrelated components of a JSP web application using the

MVC approach.

JavaBeans EJBs or
Java classes

SERVLET

Database

JSP JSP JSP

Figure 7. MVC Approach with JSP.

Normally, the role of the flow control in a web application is assigned to servlets

because they can easily incorporate any portion of Java code needed for that task. Being

freed from any presentation task, servlets can cleanly handle any portion of JSP requests,

forwarding them to the appropriate application logic component for processing and

returning responses to the JSP pages, which only task is presentation.

Data representation can be easily implemented in javabeans objects, which are

created from application logic components and sent via servlets to the JSP pages for

presentation.

Application logic can be encapsulated into EJBs, javabeans, or regular java

classes that work in the background, receiving requests from JSPs, via servlets, making

all the necessary processing and sending back to a JSP any generated response, again via

servlets.

45

Having an application incorporating such a variety of objects, it is easy to create

dedicated components for each architecture layer (presentation, control, and application

logic). This greatly facilitates maintenance, flow control, distributed application

development, and reuse of components. However, usually this approach needs more

designing and development time, mainly at start-up, and needs more skilled developers

and designers. Of course, the pay-off comes later, during the lifecycle of the web

application.

 3. Conclusions

In my ASP and JSP prototype applications, I choose the page-centric model for

the ASP and the MVC (servlet-centric) model for the JSP. I consider the MVC model

more challenging than the page-centric model. Although I have a better background in

Java technology generally than in ASP programming, it took me more time to implement

the JSP application, than the ASP. The reason was that building an application with the

MVC model needs much more time in the design phase and many more components.

However, when the basic application is up and running, making modifications or adding

more functionality is an easy thing. I found out that maintenance was facilitated from the

servlet-centric model because the three layers (presentation, control, application logic)

were well separated, and the application had many components, each of which had their

own unique functionality. When something needed to be fixed, the only thing required

was to find the appropriate component and make the appropriate correction, without

worrying about the other parts of the application. Reuse of code was also an important

issue. In my JSP application I have a component (Java class) that handles all the database

interaction. This component is very loosely coupled with the other two parts of the

application (servlets and JSPs), and it is database independent. In fact it can be used with

any other type of Java application that needs database interaction.

On the other side, ASP application is consist of ASP pages only. The initial

implementation effort was less than with JSP, and the results were achieved faster.

However, each page implementation includes presentation and control tasks,

incorporating several lines of application logic. This makes the distinction between the

different application layers not as clear as with JSP. This had its impact with

46

maintenance, because in case of any modification I had to go through many more lines of

code, in more than one component.

I could argue that, from an architectural point of view, JSP technology is more

attractive because it offers both architectural approaches in a more complete and flexible

way. It is easier to develop servlets and javabeans for the JSP servlet-centric approach

than COM components in the ASP. Also, while using the page-centric approach with

ASPs is faster than with JSPs, mainly because of the ease of use of Microsoft’s

components, like ADO, and the built-in support of the ASPs in Windows, I believe that

the JSP’s servlet-centric approach is a complete solution for every type and size of web

application, following the modern trend of the object-oriented approach.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

 V. ASP - JSP Performance

A. ANALYSIS

Tuning application performance in server side programming like Active Server

Pages(ASP) or Java Server Pages(JSP) is a significant challenge. There are many

different areas that may affect the performance of an ASP or JSP web-application:

• The ASP and JSP pages themselves

• The database

• The web-server

• The HTML pages

• The network resources

• The HTML client (browsers)

We will examine the first three, due to their direct relation to the server-side

programming, and great impact on the overall performance of the web application. I will

present the specific, performance-related factors and how they affect ASP and JSP pages.

Additionally, I will present a performance test that I made using my implementation of

ASP and JSP technology.

Besides these factors that are specific for each ASP or JSP implementation, there

are some built-in features that benefit one technology over another. Specifically, ASP is a

dynamic content system that relies on interpreted scripting languages like VBScript or

JavaScript. The ASP file containing scripts in those interpreted languages must be parsed

each time that file is requested. This parsing incurs extra overhead and delays. JSP

doesn’t suffer from that kind of parsing. JSP files are parsed only the first time they are

requested, when they compiled into servlets. As a result, JSP will be significantly slower

than ASP for this first request, because of the compilation step. However, in every

subsequent request, the already compiled JSP servlet that remained in server memory will

immediately respond without further delays, resulting in better response times than ASP.

Now, lets see which factors affect ASP or JSP performance and how:

49

Factors Description

Script
blocks

Script blocks inside a page must be combined as much as possible. Each
transition between script code and HTML code creates work for the page
processor. This affects both technologies equally. It’s better to have a few
large blocks of script code rather than many small ones. Things can be
worse for ASP pages when more than one scripting languages is used, like
VBScript and JavaScript. Then the server has to load more than one script
interpreter, which degrades performance. This is not a problem for JSP,
because it currently supports only the Java language as its scripting
language

Preparing
strings for
output

It’s also faster to output a long string than many repeated short ones. So,
creating first a long string from a number of small ones and then sending
it to the output is always a good idea. This applies equally to both
technologies. However, in the case of JSP, concatenating String objects
does not help performance, because each String concatenation creates
additional String objects. Instead, the StringBuffer object –with its
append() method– must be used, because it avoids the creation of
unnecessary intermediate objects.

Use of
Application
object for
frequently
accessed data

If there are pages or other web-related objects that run frequently and
use resource-intensive methods to obtain relatively static data, it is
possible to improve performance by retrieving that data once and storing
it to the Application object. For example, if a web site frequently needs to
translate the same relative path to its physical path then it will frequently
need to call translation methods. In a real site, that may happen thousand
times per hour. Instead, doing the translation only once, when the web-
application is started, and by storing the result to the Application object,
we make the translated path directly available to any web page, without
any need for further calls to translation methods. This applies equally to
both technologies. However, because Application object remains
constantly in memory, we must use it in a balanced way, avoiding storing
data by the megabytes.

Accessing
the same data
multiple
times from
the same
page

Instead of accessing the same data many times –e.g. inside a loop– from
a built-in object (ASP) or an implicit object (JSP), it is preferable to
access that data once and then store it to a local variable. Then, calling
that variable inside the page will be much faster and more efficient.

Object
creation

Object creation consumes resources. It’s always better to avoid creating
unnecessary objects. More specifically, in the JSP world, most Java
Virtual Machines (JVM) are using a global object heap that must be
locked for each new memory allocation. While any servlet (the compiled
JSP) is creating a new object or allocating additional memory, no other
servlet can do so. In a multithreaded world, this results in delays. In the
ASP world, it is recommended, for performance reasons, the use of the

50

Factors Description

<object> tag to create objects, instead of using the common Server
object’s CreateObject method.

Session
object

The Session object is created for each user that accesses the web
application. Session object, like every other object, consumes resources.
Avoid creating that object when session management isn’t needed. This
applies in both ASP and JSP.

Output
buffering

Output buffering was proved to improve performance. That’s why it is
by default enabled in both JSP and ASP (but only in IIS 5.0, not in IIS
4.0). Although disabling buffering is possible in both technologies, it is
usually not recommended.

Connection
status

Before any lengthy process during the execution of our pages, it is
sometimes useful to check if the client is still connected or have
abandoned our page. In the second case, further processing is a waste of
time. ASP offers the Response object’s IsClientConnected method, which
does exactly that. JSP has no similar built-in method.

Timeouts Timeouts affect performance directly and they can be set for scripts and
sessions. Short timeouts may waste resources without any result, while
long ones may lock resources waiting for something that will never
happen. Consequently, setting timeout is usually application specific. ASP
(through IIS) provides the way for setting script timeout for the duration
of page execution and session timeout between requests. JSP, through
HttpSession object or Tomcat’s web.xml file, provides the way to set
session timeout. I didn’t find any way to set script timeouts for JSPs.

Browser
side scripting

Browser-side scripting reduces the web server’s load by moving work
to the browser’s computer and by reducing the number of requests that the
web visitor needs to make. An excellent area of browser-side scripting is
the user input validation. However, this type of scripting is useless if a
browser doesn’t support it, or is disabled. This is applicable to both
technologies.

Synchroni-
zation

Synchronization is often necessary, especially in multithreaded systems,
but slows down response times. Consequently, we have to keep
synchronized blocks as small as possible. This is applicable to both
technologies. Synchronization issues are more common in multithreaded
environments like JSP web applications, which include many
synchronized blocks, or objects like Vector and Hashtable, which are
automatically synchronized. It has been shown that adding
synchronization can slow the process by a factor of eight (Casey
Kochmer).

Concurrent
users

The number of concurrent users affects dramatically the performance of
the ASP and JSP pages. This is an important factor for large web sites.
ASP works well when the concurrent users are less than 500. After that
the response is sluggish. On the other side, JSP appears to have a very

51

Factors Description

well performance even if the number of concurrent users is more than 800
(see related articles in www.jspinsider.com and
www.geocities.com/anjali_katariya/index.html)

Choosing
JSP container

While ASP has to stick with the IIS web server, JSP has a variety of
choices between available JSP containers. Tomcat, Resin, and JRun are
some of them, which offer different levels of performance, when serving
JSP pages. Also, integration with a well-known web server like Apache or
IIS can further enhance the overall application performance, leaving static
web pages to be served from the web server instead of the JSP container.

Database
design

Database design is a great performance factor in a web database
application. Tuning database usage generally provides greater payback
than optimizing the rest of the application code. Query execution can slow
down or speed-up significantly the execution time of either ASP or JSP
pages. However, keep in mind that strict database normalization doesn’t
always lead to performance gains. We have to adapt, in some extend, the
design of our database to the specific needs of our application.

Database
indexes

Under certain conditions indexes can speed-up query execution. They
must be used for large database tables, which are frequently used and
updated.

Store
procedures
and stored
queries

Moving application logic into the database when possible, reduces the
load to the web server. Store procedures and stored queries are an
excellent way to do so. Databases optimize these stored procedures and
queries during creation time and execute them more efficient during run
time. Both ASP and JSP pages can invoke store procedures and queries.

Result
Set’s cursors
and lock type

Different types of cursor means different performance. Chose the
forward-only cursor when there is no need to scroll back and forth, or to
keep our recordset always updated, because it is the fastest. Chose the
dynamic or sensitive type of cursor only when keeping our recordset
updated is necessary. Lock type also affects performance. Read-only
option is the most efficient when updates are not needed. Both ASP and
JSP support these types of cursors and lock types.

Connection
pooling

Opening a connection is a relatively time-consuming process.
Connection pooling is a technique that keeps a number of connections
open and ready to use. The number of connections depends on the needs
of the application and the system resources. JSP uses that technique by
using Java classes that do just that: initialize a number of active
connections to the database and make them available on demand. ASP
supports that technique through the built-in Windows ODBC Data Source
application, which uses a somewhat different technique: It doesn’t create
initially new connections but retains any new connection for some period
of time after an ASP page releases them. JSP appears to use connection
pooling more efficiently than ASP, making a number of connections

52

Factors Description

available when the web application is started and being more
configurable. The connection pooling tests using my ASP and JSP
applications verify this (see results at the end of this chapter).

Storing
Connection
or ResultSet
objects to
Session
objects

This practice turned out to be bad, because Connection or ResultSet
objects remained in memory for the whole session time (the time the
visitor spent on the site plus 20-30 minutes until the session expired). As a
result, it could consume valuable system resources if the site had many
concurrent visitors. Connection pooling was proved to be more effective
for both ASP and JSP and should be used instead.

ODBC –
JDBC drivers

Drivers affect dramatically database connections. Response times,
cursor and lock types are important features of a driver and must be tested
thoroughly before its regular use. This is even more necessary for JSP,
due to the various types of drivers (Type 1-4) and their implementations.
Additionally, the JDBC-ODBC bridge has known memory leak problems
and it is not recommended for production systems.

Table 25. ASP-JSP Performance Factors.

B. COMPARISON AND CONCLUSIONS

We built two web applications, one with the ASP and another with the JSP

technology. They provide to the user exactly the same layout, interface, and functionality.

The difference is in the underlying application architecture, which is totally different (I

explain the architectural details in chapter IV “ASP-JSP ARCHITECTURE”) and the

different way the two applications handle all the above performance-related factors. The

details of that test are as follows:

• The database is the same for both applications. Microsoft Access 2000

was used.

• Connection pooling was tested in both cases.

• I used both simple and complex (nested) queries to display, add, update,

delete and navigate through the database records.

• The ODBC-JDBC bridge was used for the JSP connection.

• New JDBC features were used like the CallableStatement interface, using

stored procedures.

• Connections to the database was tested in two ways:

53

• Database and web server in the same machine.

• Database in different machine than web server, using LAN connection.

The results of the database access times are shown in the following table (in each

case, access times were estimated as the mean value of thirty tries):

Time to perform the database query in

milliseconds

Type of connection

ASP JSP

Database in the same machine with
web server with no connection pooling

160.6 110.3

Database in the same machine with
web server with connection pooling

150.7 70.5

Database in a different machine with
web server (LAN connection) with no
connection pooling

281.3 236.67

Database in a different machine with
web server (LAN connection) with
connection pooling

280.6 91.7

Table 26. Database Access Results.

We observe that:

¾ In every case, JSP connections were much faster than ASP ones.

¾ Connection pooling really improves performance in the JSP case,

especially in remote database access, where the benefit is huge.

¾ Connection pooling doesn’t offer any significant benefit in the ASP case.

I think we can find the reasons of such performance difference between the two

technologies in:

� The nature of the JSP technology that keeps the compiled JSP servlet in

memory, ready to respond in each request, without parsing each time the

JSP file. On the other side, ASP files were parsed with each request from

the ASP processor, resulting in additional delays.

� The connection pooling in the case of JSP reduced the access time

dramatically, while in the case of ASP didn’t help much.

54

We have to mention that the ODBC-JDBC is the weakest and slowest Java driver

and also that Tomcat isn’t the fastest JSP container. These facts certainly affected the JSP

performance that could have been better.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

VI. ASP - JSP Web Security

A. ANALYSIS

We could define Security as the mechanism that keeps sensitive information

protected and available only to authorized users. Speaking about the Web, we could

relate Security to four important issues:

¾ Authentication, which is the ability to verify the identities of the parties

involved.

¾ Authorization, which limits access to resources to a select set of users or

programs.

• Confidentiality, which ensures that only the parties involved can

understand the communication.

¾ Integrity, which ensures that the content of the communication is not

changed during transmission.

ASP and JSP web security is mostly related to the underlying web server and

operating system. ASP uses Microsoft’s Internet Information Services (IIS) as the web

server and Windows as the operating system. JSP needs a JSP container to operate.

Tomcat for example, which is the JSP reference implementation can be used as either a

stand-alone container or as an add-on to an existing web server (like Apache, IIS, or

Netscape servers). JSP can run under any operating system. Besides any web server and

operating system support, each technology may be used for building custom systems in

order to apply client authentication and authorization, as well as client certificate

validation. Now, lets see in detail how each of these two technologies implement web

security.

1. JSP

JSP implement client authentication using the following techniques:

• Basic

• Digest

57

• Form

• X.509 client certificate

• Custom

Beginning with Servlet API version 2.2 and JSP API version 1.1, the technique

for configuring authentication has been standardized. Now, configuration of security

policies can be accomplished in a portable manner using the web.xml deployment

descriptor. In this section I will describe only the security related tags of the web.xml, not

the entire file syntax. Specifically, the <auth-method> tag, which resides within a

<login-config> tag, defines the login methodology to be used by this application. It

allows BASIC, DIGEST, FORM, and CLIENT-CERT values representing authentication

types of Basic, Digest, form-based and client-side certificates, respectively. Figure 8

shows the appropriate syntax of these tags.

T

for Basi

T

enforced

<securi

<securi

<login-config>

 <auth-method>

 BASIC <!-- BASIC, DIGEST, FORM, CLIENT-CERT -->

 </auth-method>

 <realm-name>

 Default <!-- optional, only useful for Basic or Digest-->

 </realm-name>

</login-config>

Figure 8. Login Configuration Tags

he <realm-name> tag specifies the login realm to use and it has meaning only

c and Digest authentication.

he application’s authentication method defined in the <auth-method> tag is

 only for those files (servlets, JSPs or HTML pages) that are mentioned inside a

ty-constaint> tag. Each such tag restricts one file. We can define as many

ty-constaint> tags as we want in order to restrict access to our files.

58

The last part of the authentication chain is to somehow define a list (either in a

database or in a simple file) of valid usernames and passwords available to the server.

The server will look up that list each time a client submits their credentials, in order to

grant access or not. For Tomcat 3.2 you specify users in the conf/tomcat-users.xml file.

This XML file is unencrypted, with usernames, and passwords in plain text.

Finally, when we have applied all the security restrictions in our web.xml file, and

a client request occurs for a restricted page, the web server denies access instructing the

browser to ask for the user credentials. If the user submits the appropriate credentials,

then access is granted (authorization issues occur at this point, but we will discuss those

shortly). Otherwise, access is denied and the user is prompted for their credentials again

by the browser.

The details of each authentication type is as follows:

a. Basic Authentication

Basic authentication is a simple authentication protocol defined as part of

the HTTP 1.0 protocol defined in RFC 2617 (available at

http://www.ietf.org/rfc/rfc2617.txt). Although virtually all web servers and web browsers

support this protocol, it is very weak because passwords are transmitted over the network,

thinly disguised by a well-known and easily reversed Base64 encoding. Anyone

monitoring the TSP/IP data stream has full and immediate access to all the information

being exchanged, unless there is an additional Secure Socket Layer (SSL) encryption

employed. However, basic authentication works well through proxy servers and firewalls.

b. Digest Authentication

Digest authentication is a reasonably new authentication scheme that is

part of the HTTP 1.1 protocol defined also in RFC 2617. It is a variation of the Basic

authentication. Instead of transmitting a password over the network directly, a digest of

the password is used instead. The digest is produced by hashing (using MD5 encryption

algorithm) the username, password, URI, HTTP request method, and a randomly

generated value provided by the server. Both sides of the transaction know the password

and use it to compute digests. If the digests match, access is granted. Transactions are

59

http://www.ietf.org/rfc/rfc2617.txt

thus more secure than Basic authentication, because no password is transmitted in plain

text. However there are some serious limitations:

• Currently only Microsoft Internet Explorer 5.0 or later supports digest

authentication

• Both Digest and Basic authentications are subject to a replay attack

[Ref. 4, 7]

c. Form-Based Authentication

JSPs can also perform authentication without relying on HTTP

authentication, by using HTML forms instead. Using this technique allows users to enter

a site through a well-designed, descriptive, and friendly login page. Form-based

authentication is built into JSP 1.1 and Servlet 2.2 API. Figure 9 shows how to use this

type of authentication with the web.xml file.

has also

<login-config>

 <auth-method>

 FORM <!-- BASIC, DIGEST, FORM, CLIENT-CERT -->

 </auth-method>

 <form-login-config> <!—only useful for FORM -->

 <form-login-page>

 /loginpage.html

 </form-login-page>

 <form-error-page>

 /errorpage.html

 </form-error-page>

 </form-login-config>

 </login-config>

Figure 9. Form-Based Authentication Tags.

The <auth-method> has been changed to FORM. The <realm-name> tag

 been replaced with a <form-login-config> tag that specifies the login page and

60

the error page to use for the authentication. Any time the server receives a request for a

protected resource, the server checks (via Session object) if the user has already logged

in. If they have, access is granted (as long as the user is authorized to access that page). If

they haven’t logged in, the user is redirected to the login page (loginpage.html), where the

user is prompted to enter their credentials. If the submitted credentials are correct then the

user is granted access. Otherwise, the server redirects the user to the error page

(errorpage.html), indicating the type of error.

Compared with basic or digest authentication, form-based login has the

advantage that the user enters the site through a friendly login page. However, it still

transmits the user password in plain text.

d. X.509 Client Certificate Authentication

When security matters most, digital certificates are the best solution. SSL

3.0, which provides both server and client authentication using certificates, offers a

higher degree of confidentiality, integrity, and authentication. There is no need for user

credentials, because each party (server, and client) has to submit their own, signed

certificate. If the certificates are valid then the entire connection is encrypted and

protected, providing strong authentication, confidentiality, and integrity.

JSP or servlets use the web.xml file to require SSL from the server, via the

<user-data-constraint> tag, which is contained inside the <security-constraint> tag.

Figure 10 shows the exact syntax.

<security-constraint>

 …..

<user-data-constraint>

 <transport-guarantee>

 CONFIDENTIAL <!- - INTEGRAL or CONFIDENTIAL

 </transport-guarantee>

</user-data-constraint>

</security-constraint>
Figure 10. Client Certificate Authentication Tags.

61

The <transport-guarentee> tag has two legal values: INTEGRAL and

CONFIDENTIAL. INTEGRAL requires the data must be guaranteed not to change in

transit. CONFIDENTIAL requires the data must be guaranteed not to have been read by

an unauthorized third party in transit. CONFIDENTIAL implies INTEGRAL, and it is

usually the standard guarantee.

After requiring SSL from the server we can ask client authentication based

on certificates using the <login-config> tag and defining CLIENT-CERT inside the

<auth-method> tag, as we have already seen above.

As with Basic and Digest authentication, all of the SSL details are handled

by the server, transparent to JSPs or servlets. However, the JSP or servlet can retrieve the

client’s certificate as a request attribute:

java.security.cert.X509Certificate cert =

 (java.security.cert.X509Certificate)

 request.getAttribute(“javax.servlet.request.X509Certificate”);

For any server running on J2SE 1.2 or supporting J2EE 1.2 or later, the

request attribute javax.servlet.request.X509Certificate will return a

java.security.cert.X509Certificate object representing an X.509v3 certificate. That

certificate can be picked apart and checked for validity, issuer serial number, signature,

and so forth.

e. Authorization

Before we proceed to the custom authentication and authorization lets see

how JSP implements authorization. JSP follows the model of role-based authorization.

With this model, access permissions are granted to an abstract entity called a security

role, and access is allowed only to users or groups of users who are part of that given

role. The deployment descriptor specifies the type of access granted to each role, using

the <security-role> and <auth-constraint> tags, but does not specify that role to user or

group mapping. That is done with server specific tools, using database tables, text files,

or the operating system. Tomcat 3.2 implements that kind of mapping using the tomcat-

62

users.xml file. In that file, for each user we define a username, password and a role.

Figure 11, shows a sample tomcat-users.xml file.

user B

server

where

applic

banki

soluti

done

receiv

makes

keeps

crede

tries t

redire

JSP-s

<tomcat-users>

 <user name="Gil" password="d45n6rc" roles="engineer" />

 <user name="Alice" password="id45gce" roles="engineer, guest" />

 <user name="Bob" password="3k6u7jm" roles="manager, guest" />

</tomcat-users>
Figure 11. A Sample Tomcat-users.xml File.

So, using Example 4, if a file is protected with the manager role, then only

ob can access that file.

z. Custom Authentication and Authorization

Normally, client authentication and authorization is handled by the web

, using the settings in the deployment descriptor file. However, there are cases

 the desired security policy cannot be implemented by the web server. Some

ations require from the user more than a username and a password. For example,

ng applications may require a username, password, and a PIN. In this case the

on will be to create a custom login system that will handle that job. This can be

using JSPs and servlets. Usually, such a system consists of a login page that

es the user’s credentials and sends them to a login controller servlet. This servlet

 the necessary checks between the submitted credential and a database table that

 the authorized users. If the credentials are valid then access is granted. If the

ntials are invalid then the user is redirected again to the login page. In case the user

o access directly a page, other than the login page, access is denied and they are

cted to the login page. The details of such an implementation can be seen in my

ervlet implementation.

63

2. ASP

ASP security relies totally on the IIS web server and the underlying Windows

operating system. Actually IIS is one of the services of the operating system. Windows

(NT or 2000) represents each user (principal) with an account, which may belong to one

or more user groups. Access or authorization is governed by Access Control Lists (ACL).

ACLs associate principals with resources such as files. An ACL contains access control

entries (ACEs), and each ACE contains information about what principal can do what to

the resource.

Figure 12, shows the IIS handy Graphical User Interface (GUI), which supports

the following authentication techniques:

• Anonymous access

• Basic

• Digest

• Integrated Windows

• X.509 client certificate

Figure 12. Authentication Methods in IIS 5.0.

64

Being part of the HTTP protocol, Basic and Digest authentication are

implemented from IIS similarly to the JSP. All their capabilities and limitations apply to

Windows also. Consequently, we will examine only the rest of the authentication

schemes.

a. Anonymous Access

Technically, anonymous access is not an authentication scheme because

the calling user is never asked to present credentials. However, because Windows require

that all users authenticate themselves before they access any resource, IIS provides a

default user account called IUSR_machinename as the Anonymous User account for

anonymous access. All anonymous access is performed in the context of this account.

b. Integrated Windows

This type of authentication incorporates two different authentication

protocols: the native Windows NT Challenge/Response (NTLM) and the Kerberos V5

authentication protocols. Kerberos is preferred because it is faster and more secure than

NTLM. More important, Kerberos is able to authenticate both the server and the client,

while NTLM authenticates only the client. Kerberos is a new feature and operates in the

Windows 2000 environment only. NTLM is kept for maintaining backward

compatibility. However, only Windows machines and the Microsoft Internet Explorer

support this type of authentication.

c. X.509 Client Certificate

As we have already mentioned in the JSP section, SSL 3.0 is the best way

to check server and client authentication, integrity and confidentiality. IIS offers an easy,

graphical way to configure SSL by providing wizards for:

¾ Enrollment for a server certificate from a Certificate Authority (CA),

such as Verisign, or use the Microsoft Security Services to create

your own certificate for use in an Intranet.

¾ Certificate Trust List (CTL) creation. This list contains CAs, which

their certificates can be trusted from IIS.

¾ Mapping client certificates to user accounts, facilitating the

authentication and authorizations procedures.

65

 When all these settings are done, IIS can handle all the details of an SSL

connection transparently for the user.

 Besides that, ASP can retrieve client certificates using

Request.ClientCertificate collection. ClientCertificate collection is a group of client

certificate related attributes that belong to the Request built-in object of the ASP

technology (see Chapter 2 “ASP-JSP objects” for more details). This collection contains

attributes describing the certificate’s issuer, user, serial number, validity period and much

more. All that information is available to ASP, which can easily validate a client

certificate.

d. Authorization

As stated before, IIS performs authorization using Windows ACLs.

Besides that, IIS supports two more authorization mechanisms:

¾ Web permissions, which allow IIS to mark web files as read only,

write, read, and write, and perform specific tasks like restricting

script and .exe file execution. In the case of a web permission and

a ACL conflict, the most restrictive applies.

¾ IP address and domain name restrictions: you can grant access to

all hosts other than those you specifically deny or make sure that

no host has access other than those you specifically allow

e. Custom Authentication and Authorization

66

ASP can implement custom authentication and authorization using a

mechanism similar to the previous described JSP custom login system mechanism. The

difference is that instead of a login page that receives the user credentials and a servlet

that makes the necessary checks, in the ASP case, there is only one ASP page that

receives the user credentials and makes all the checks. All other pages of the application

are protected from direct access, checking the session object for valid login id (a server

side include (SSI) file does exact this task). See my actual ASP implementation for

details. However, Microsoft highly recommends the use of the built-in authentication and

authorization methods instead of the custom ones.

B. CONCLUSIONS

I think that we cannot directly compare ASP and JSP technologies in the context

of web-security. Most of these issues are handled by the underlying web-server or the

operating system. ASP relies on IIS, which is a production-strength web server, along

with Windows. JSP defines a standard API that must be implemented from a JSP

container. JSP containers, like Tomcat, can be mounted in other more robust web servers

like Apache or IIS. There are also some new web servers that have built-in JSP and

servlet support, providing production strength and robustness.

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

VII. CONCLUSIONS

This thesis explored web-based database development with ASP and JSP. Both

are among the leaders in web technology. They both created as an alternative to the CGI

programming. Among their goals were to:

• speed-up the overall web-application development

• separate the data presentation from the application logic

• facilitate the web page - database interaction

Up to a point, both are successful in their goals. However, there are also important

differences between these two technologies. The objective of that thesis was to find these

differences and evaluate them.

One of the most important differences is the platform independence. While ASP

technology has to be used with Microsoft Windows and their web servers (there are few

third-party utilities that allow ASP to run in other platforms like UNIX, but they are not

widely used), the JSP technology is platform independent, and can be used in Unix,

Linux, and Windows as well. Some of the current industrial-strength servers provide

built-in support for JSP, like iPlanet and WebSphere, while others like Apache or

Windows IIS can be configured to use JSP easily. This is definitely an important factor if

we want our web application to be able to be up and running in different machines with

different operating systems.

Issues related to application architecture are also an important difference. JSP

allows much more flexibility, scalability, and code reusability through a number of web

components like servlets, JavaBeans, and Enterprise JavaBeans. All these components

can be incorporated in a JSP web application in order to help developers and designers to

separate presentation, control, and application logic tasks. This greatly facilitates

maintenance, extends application lifecycle, and permits already developed and tested

components to be reused. ASP technology doesn’t provide that variety of web

components, relying primarily on COM objects as its web components. However,

developing COM components is not an easy task, and needs more effort than developing

JavaBeans or servlets.

69

The underlying language is definitely an important factor. ASP supports scripting

languages like VBScript. These are usually a subset of other compiled languages. As a

result they are somehow limited comparing to a compiled, full-featured language like

Java, which is supported by JSP. Moreover, scripts created with scripting languages like

VBScript, are parsed dynamically each time the script is requested (ASP case), resulting

in extra overhead. On the other side, scripts created with a compiled language like Java

(JSP case) are parsed once, compiled and stay in memory, ready to serve immediately

any future request. It is not accidental that in .NET, the new platform of Microsoft, a new

compiled language was introduced, the C#, which has a lot of common features with Java

(creates bytecode when it is compiled, built-in memory management, etc), and is going to

be used with the new version of ASP the ASP+, based on the .NET platform.

Nevertheless, we have to mention that with ASP is easier and faster to build small

or medium web applications due to its immediate integration with the IIS, the Windows

web server and the built-in support for a number of available web objects like Microsoft’s

Active Data Objects (ADO). Because ASP technology is in the market much more time

than JSP, there is more gained experience among ASP developers than JSP ones, and also

there are more tools currently available for web application development with ASP than

with JSP.

Finally, the decision between the two technologies will be greatly affected by the

current expertise of our development team and the specific requirements of the

application, which will be developed.

70

Appendix A

A. APPLICATION DESCRIPTION

In this appendix, two web applications (prototypes) will be presented, one with

ASP and another with JSP technology. Both applications are used to manage and interact

with the same database. The database stores information about military personnel, units,

and duties. Also, both applications have the same layout, user interface and functionality,

as we can see in the sample pages in Figure 13.

Figure 13. Identical ASP and JSP Pages for Database Information Retrieval.

However, the underlying application architecture is totally different. The ASP

application consists of just eight ASP files. Each such file has to receive user requests,

connect and query the database, and finally present to the user the requested information.

Active Data Objects (ADO) are used for any interaction with the database. There is no

other type of web component, beyond these ASP pages. Specifically, the application

logic and the presentation tasks are implemented as follows:

• One ASP page is responsible for the user authentication. It is called only

when the user accesses for first time any page of the application. Then, it

queries a table in the database, which keeps all the user credentials. If the

submitted user credentials match any stored credentials, then access is

granted. Otherwise, access is denied, and the user is prompted to try again.

71

• One ASP page is used as a homepage of the application. It presents to the

users the title of the application and the main menu.

• One ASP page is used as a search page. It allows users to search the

database for a person based on the person’s ID or last name. Then, the

page allows the user to double click any retrieved person in order to view

more information about the person’s unit and duties.

• Four ASP pages are used to present to the user information about the units

and duties of a particular person. Three of the pages are used inside three

frames presenting the actual data. The fourth page includes these three

frames, without any presentation task, and it is the actual ASP page that is

called from the above search page.

• One ASP page is used for the database maintenance. It allows the user to

search, navigate, insert, modify, and delete records from the database.

On the other side, JSP application uses a number of web components beyond JSP

pages like servlets, JavaBeans, and regular Java classes. Each type of component has

specific tasks. JSPs are used only for presentation purposes. A servlet is used only for the

information control flow. JavaBeans and a number of Java classes are used to implement

the application logic and to interact with the database. The entire application consists of

nine JSP pages, one servlet, three JavaBeans, and seventeen regular Java classes. We can

see that the number of files that the JSP application consists of, is much larger that the

ASP equivalent, due to the different application architecture and the discrete separation

of tasks. Specifically, the application is implemented as follows:

• All the JSP pages are used to present to the user a number of web pages

such as the application’s homepage, search page, view pages, and a page

for the database maintenance. These pages are identical to the ASP pages

we saw above (from a presentation point of view). They accept the user

requests and forward them to the controlling servlet. Also, they receive

back processed data from the same controlling servlet and present it to the

user.

72

• The controlling servlet accepts all the user requests (search, view, insert,

modify, delete) through the JSP pages. Then, forwards each user request to

the appropriate Java class for processing (using a hash table), according to

the type of request. When the processing is done, the response is returned

to the servlet, in order to forward it to the appropriate JSP page for

presentation.

• The JavaBeans are used to encapsulate the results of the database queries.

They are created by regular Java classes that handle the interaction with

the database. Then, they are forwarded, via the controlling servlet, to the

JSP pages for presentation.

• The regular Java classes are used to implement the application logic.

There is a singleton class that performs all the necessary database

interaction. That class extends another class that handles the connection

pooling. The details about the database issues and the connection polling

are presented in the following subsection. Also, for any single action that

the application performs there is one small class that does exactly that. For

example, the application lets user search for a person based on his ID, so

there is a Java class named FindPersonById.java that does exactly that.

That class can be reused in other parts of the application where the same

functionality is needed (to search a person by his ID). Additionally, if any

modification is needed in the future, that modification can be isolated in a

small class, without affecting other parts of the application.

B. DATABASE CONNECTIVITY ISSUES

Both applications retrieve, store, update, and delete data from a database. The MS

Access 2000 was used as a database. With not much effort, we could use any other

database, more robust than Access, like MS SQL Server or Oracle. The ODBC for ASP,

and the JDBC for JSP allows that transition, simply by using an appropriate driver and

minor modifications in the application’s code. Two types of database connections were

used:

73

• Local, meaning that the application was in the same machine with the

database

• Network, meaning that the application was in a different machine than the

database, but in the same Local Area Network (LAN). A Fast Ethernet

10/100 LAN was used.

Additionally, connection pooling was used in both applications. One of the most

time consuming processes is the connection with the database. In the case of the Internet,

where the users will not wait much time to view the requested data, that kind of delay is a

significant issue. Connection pooling comes as a solution to that problem. In that case, a

number of connections are established initially, when the application starts. The number

of connections depends on the number of anticipated concurrent users, the nature of the

application, and the hardware and software limitations. Then, every subsequent database

connection request will be served by the already established connections, resulting in

better performance. However, each technology implements connection pooling

differently. In the JSP case, regular Java classes were used to establish a number of initial

database connections, making them available for future requests. The type of connections

and the way that they are used by the application is totally configurable via the Java

classes that implement the connection pooling. A Java class from Core Servlets and JSPs

book, [Ref. 7], was used for the JSP connection pooling implementation.

On the other side, ASP implements connection pooling using a Windows built-in

feature. Specifically, the Windows administration tool Data Sources (ODBC) allows the

connection pooling to be set for every supported database driver (an account with

administrator privileges required). However, this implementation is somehow limited,

because it does not establish a number of connections up-front, but instead it extends the

life of the connections that will be established when the application will start running,

allowing these connections to be reused. This is transparent to the developer, and it is

handled by the Windows. However, in Chapter V “ASP-JSP Performance” we saw that

JSP connection pooling implementation, outperforms the Windows’s one.

74

 LIST OF REFERENCES

1. Buyens, J., “Web Database Development”, Microsoft Press, 2000.

2. Eddy, S., “Active Server Pages 3”, IDG, 2000.

3. Fleet, S., “Active Web Database Programming”, SAMS, 1999.

4. Howard, M., ”Designing Secure Web-Based Applications for Windows 2000”,

Microsoft Press, 2000.

5. MCSE, “Internet Information Server”, Sybex, 2000.

6. Hanna, P., “JSP, The Complete Reference”, MacGraw-Hill, 2001.

7. Hall, M., “Servlets and JavaServer Pages” Prentice Hall 2000.

8. Hunter, J., “Java Servlet Programming”, O’Reilly, 2001.

9. Fields, D. “Web Development with JSP”, Manning, 2000.

10. Williamson, H., “HTML Master Reference”, IDG BOOKS, 1999.

11. Wilton, P., ”JavaScript” WROX, 2000.

12. Reese, G., “JDBC and JAVA”, O’Reilly, 2000.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman Code CS
Naval Postgraduate School
Monterey, California

4. Professor Thomas Wu, Code CS

Naval Postgraduate School
Monterey, California

5. LCDR Chris Eagle, Code CS

Naval Postgraduate School
Monterey, California

6. D.I.K.A.T.S.A

Inter-University Center for the Recognition of Foreign Academics Titles
Athens, GREECE

7. Nikolaos Tsardas

Ptolemaida, GREECE

77

	I.INTRODUCTION
	II.ODBC – JDBC Analysis and Comparison
	A.ODBC
	B.JDBC
	C.ODBC – JDBC COMPARISON
	1.Simplicity
	2.Functionality
	3.Performance

	III.ASP-JSP Objects Analysis
	A.ASP BUILT-IN OBJECTS
	1.Request Object
	2.Response Object
	3.Server Object
	4.Application Object
	5.Session Object
	6.ObjectContext Object
	7.ASPError Object

	B.JSP IMPLICIT OBJECTS
	1.Servlet-related Objects
	Page Object
	Config Object

	2.Input-Output Objects
	a.Request Object
	b.Response Object
	c.Out Object

	3.Contextual Objects
	a.Session Object
	b.Application Object
	c.PageContext Object

	4.Error Handling Objects
	Exception Object

	C.COMPARISON BETWEEN THE ASP AND JSP OBJECTS
	1.Request Object API
	2.Response Object API
	3.Session Object API
	4.Application Object API
	5.Error Object API

	IV.ASP-JSP Application Architecture
	A.ANALYSIS
	1.Presentation Layer
	2.Application Layer
	3.Control Layer
	4.Page-centric Approach
	a.Maintainability
	b.Flow Control

	5.MVC Approach

	B.COMPARISON
	1.ASP Architecture
	2.JSP Architecture
	3.Conclusions

	V.ASP - JSP Performance
	A.ANALYSIS
	B.COMPARISON AND CONCLUSIONS

	VI.ASP - JSP Web Security
	A.ANALYSIS
	1.JSP
	a.Basic Authentication
	b.Digest Authentication
	c.Form-Based Authentication
	d.X.509 Client Certificate Authentication
	e.Authorization
	z.Custom Authentication and Authorization

	2.ASP
	a.Anonymous Access
	b.Integrated Windows
	c.X.509 Client Certificate
	d.Authorization
	e.Custom Authentication and Authorization

	B.CONCLUSIONS

	VII.CONCLUSIONS
	Appendix A
	A.APPLICATION DESCRIPTION
	B.DATABASE CONNECTIVITY ISSUES

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

